Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría)
El quinto postulado de Euclides ha sido aceptado como un teorema desde la época de Grecia Antigua. Los esfuerzos para probarlo se han emprendido por más de dos mil años. La geometría no Euclidiana basada en el rehusó del postulado apareció en la primera mitad del siglo diecin...
| Main Author: | |
|---|---|
| Format: | Article |
| Published: |
Universidad Nacional de Ingeniería
2021
|
| Subjects: | |
| Online Access: | http://ribuni.uni.edu.ni/4792/1/ricardo%2C%2B25.%2BGrigoriy%2B24.pdf |
| id |
4792 |
|---|---|
| recordtype |
eprints |
| spelling |
47922023-02-08T23:34:28Z Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) Heyfetz, Eduard O 710 Urbanismo & arte del paisaje El quinto postulado de Euclides ha sido aceptado como un teorema desde la época de Grecia Antigua. Los esfuerzos para probarlo se han emprendido por más de dos mil años. La geometría no Euclidiana basada en el rehusó del postulado apareció en la primera mitad del siglo diecinueve. Aquí se trata de retornar al problema por medio de considerar las bases metafísicas de física. El instrumento ideal derivado aquí para analizar infinidad es una unidad infinitamente pequeña que no puede ser dividido más. Este instrumento fue usado para determinar las propiedades fundamentales del llamado espacio. Se concluyó que el nivel básico no contenía ningunas barras oblicuas o curvadas. Las barras oblicuas y curvadas aparentes son escaleras con escalones desdeñablemente fluentes variables o constantes. Por lo tanto, hay la refutación de las geometrías no Euclidianas y la busca por una prueba nueva del postulado. Se concluyó, entre otras cosas, que la exigencia de derivar la prueba de los otros cuatro axiomas Euclidianos desviaba la atención delos matemáticos del problema real. El autor probó el quinto postulado en una superficie plana. Se considera la aplicación del postulado a un par de líneas oblicuas. Se describen las propiedades básicas del llamado espacio para concluir el estudio Universidad Nacional de Ingeniería 2021-03 Article PeerReviewed text http://ribuni.uni.edu.ni/4792/1/ricardo%2C%2B25.%2BGrigoriy%2B24.pdf http://revistas.uni.edu.ni/index.php/Nexo Heyfetz, Eduard O (2021) Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría). Nexo Revista Científica, 34 (1). pp. 280-309. ISSN 1995-9516 http://ribuni.uni.edu.ni/4792/ |
| institution |
Universidad Nacional de Ingenieria |
| collection |
Repositorio Institucional-RIBUNI |
| topic |
710 Urbanismo & arte del paisaje |
| spellingShingle |
710 Urbanismo & arte del paisaje Heyfetz, Eduard O Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| description |
El quinto postulado de Euclides ha sido aceptado como un teorema desde la época de Grecia Antigua. Los esfuerzos para probarlo se han emprendido por más de dos mil años. La geometría no Euclidiana basada en el rehusó del postulado apareció en la primera mitad del siglo diecinueve. Aquí se trata de retornar al problema por medio de considerar las bases metafísicas de física. El instrumento ideal derivado aquí para analizar infinidad es una unidad infinitamente pequeña que no puede ser dividido más. Este instrumento fue usado para determinar las propiedades fundamentales del llamado espacio. Se concluyó que el nivel básico no contenía ningunas barras oblicuas o curvadas. Las barras oblicuas y curvadas aparentes son escaleras con escalones desdeñablemente fluentes variables o constantes. Por lo tanto, hay la refutación de las geometrías no Euclidianas y la busca por una prueba nueva del postulado. Se concluyó, entre otras cosas, que la exigencia de derivar la prueba de los otros cuatro axiomas Euclidianos desviaba la atención delos matemáticos del problema real. El autor probó el quinto postulado en una superficie plana. Se considera la aplicación del postulado a un par de líneas oblicuas. Se describen las propiedades básicas del llamado espacio para concluir el estudio |
| format |
Article |
| author |
Heyfetz, Eduard O |
| author_facet |
Heyfetz, Eduard O |
| author_sort |
Heyfetz, Eduard O |
| title |
Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| title_short |
Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| title_full |
Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| title_fullStr |
Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| title_full_unstemmed |
Demonstración del quinto postulado de Euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| title_sort |
demonstración del quinto postulado de euclides y creación de las bases metafísicas del llamado espacio (metametría) |
| publisher |
Universidad Nacional de Ingeniería |
| publishDate |
2021 |
| url |
http://ribuni.uni.edu.ni/4792/1/ricardo%2C%2B25.%2BGrigoriy%2B24.pdf |
| _version_ |
1809198692148707328 |
| score |
11.129828 |